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Decrement Signatures Part II: Experimental Results
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identification of the system parameters of a randomly excited

structure may be treated using a variety of statistical tech-

niques. Of all these techniques, the Random Decrement is unique

in that it provides the homogeneous component of the system

response. Using this quality, a system identification tech-

nique was developed based on a least-squares fit of the signa-

tures to estimate the mass, damping, and stiffness matrices of

a linear randomly excited system. In part I of this paper tile

mathematics of the technique was presented in addition to the

results of computer simulations conducted to demonstrate the

prediction of the response of the system and the random forcing

function inltilly introduced to excite the system. This part of

the paper presents the results of an experiment conducted on an

offshore platform scale model to verify the validity of the

technique and to demonstrate its application in damage detec-
tion.

INTRODUCTION

A system identification technique was developed in part I of this paper for

extracting meaningful information from randomly excited structures. This technique

is based on the Random Decrement and cross-Random Decrement signatures of the struc-

ture [2,3,4,5]. Computer simulations performed using a linear system demonstrated

the effectiveness of this technique in obtaining an accurate model of the system and

in predicting the random forcing function introduced for excitation. The system
identification technique is briefly desrcibed as follows:

Given a randomly excited linear multidegree-of-freedom system, response data is

obtained at several locations. A model for the system is assumed in the form

IN] X + [C] X + [K] X = F (1)
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where [M] and [K] are real symmetric matrices representing the mass and stiffness of

the structure, [C] is a nonproportional , real, symmetric damping matrix, F is the

forcing vector, and X and its time derivatives represent the response of the system.

Random Decrement and cross-Random Decrement signtuares are then obtained from the

response data thus forming the homogeneous components of the response. Substituting

the signatures in Equation (i) and noting that vector F is zero, a least squares fit

is then performed with the assumption that one of the elements in the system matri-

ces is known. A detailed description of the constraints on the matrices and the

least squares method is given in part I of this paper.

SCALE MODEL EXPERIMENT

A 1 : 13.8 scale model of an offshore platform structure was set up on outdoor

earth ground. The base of the structure was welded to a steel (box type) frame, then

both were lowered into a 6'x6'x3' pit hole. The pit was then filled with wet

concrete up to the the base of the structure and left to cure.
The model structure consists of four legs made of 2" diameter, 0.25" wall, steel

pipes. Figure I shows the configuration of the structure with its dimensions and

labeled points. A pendulum was set up to provide random impact excitation at point

13. The responses at points I to 13 were monitored using accelerometers screwed into

threaded aluminum blocks attached directly to the structure.

0,01)5"1/4"O.D.WnI[, _!/
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Figure 1 - Configuration of offshore platform scale model

VERIFICATION OF THE SYSTEM IDENTIFICATION TECHNIQUE

The first experiment was conducted to verify the reliability of the system iden-

tification technique in obtaining a model from Randomdec signatures. To accomplish

this task, the response of the structure, as well as the input to the structure, had

to be measured.
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Four accelerometers were mountedat locations 4, 6, 8, and 13, and a load cell
was firmly attached to the tlp of the pendulumhammer.The structure was randomly
impacted for 20 seconds while the output of the five transducers was recorded on
analog tape simultaneously. The five channels were then digitized at a sampling rate
of I000 Hz after passing through a low pass filter set at 125 Hz. The cutoff fre-
quency of the filter was selected based on a maximumsystem frequency of interest of
85 Hz.

The tlme record at location 13 was used for triggering the signatures. Figure 2
shows the Randomdecsignature for location 13. The system identification technique
was then employed In conjunction wlth the signatures to calculate the 30 unknown
parameters in the [M], [C], [K] matrices. Four sets of matrices were initially
calculated, each set corresponding to one fixed element in the stiffness matrix. The
four sets of matrices were then averaged to obtain the best estimate for the model.
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Figure 2 - Randomdec signature of time response at location 13

To confirm the accuracy of the established model, the three system matrices were

substituted into the set of differential equations describing the system, Equation

(i), and the second derivative of the load applied during the experiment introduced

as input (the derivative is taken since the signatures were obtained from accelera-

tion records). The initial conditions were extracted from the measured response of

the system, and Equation (i) solved numerically. A step size of 0.001 sec. was used

corresponding to the tlme step of the sampled data.

Since the estimated system parameters were not originally scaled to match the

actual system in magnitude, the response had to be scaled to fascllltate the com-

parison. This was performed by multiplying the estimated reponses at the four points

by the average of the ratios of the standard deviations of the measured responses to

the standard deviations of the estimated responses. Furthermore, all the responses

were multiplied by -I since they appeared to be mirror images of the actual reponses

about the tlme axis. Thls change in sign Is a legitimate step since the same effect

could have been achieved by scaling the system matrices by -I.

The results of the comparison at point 4 are shown in Figure 3. The plots indi-

cate that the predicted system response is in good agreement wlth the 0ctual

response.
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Figure 3 - Comparison of measured vs. predicted responses at point 4

Another approach to verify the accuracy of the model is to compare the measured

force with the predicted force. Therefore, the measured system response was substi-

tuted in Equation (i) with the three estimated matrices and the force vector calcu-

lated. Again, the output was scaled for comparison. Figure 4 shows the predicted

force time record and the second derivative of the measured force time record at

location 13. The forces are in good agreement when a force is being applied, but

some large oscillation exists in the predicted record when no force is actually

being applied. Careful inspection of the figure reveals that the oscillations have a

frequency of 125 Hz, correponding to the frequency of the filter. Figure 5 shows a

comparison of the forces at locations 4, 6, and 8. The magnitude of the predicted

forces is small relative to the force at point 13 (these records were already scaled

using the scaling factor employed at point 13).
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Figure 4 - Comparison of measured vs. predicted forces at point 13
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Figure 5 - Comparison of measured vs. predicted forces at points 4,6,& 8.

DAMAGE DETECTION

A useful application for the system identification technique is the detection of

changes in the system parameters resulting from induced damage. A large crack in a

structure would decrease the local stiffness, thus reducing one or more of its

natural frequencies. On the other hand, a corroded section of the structure might

reduce the localized mass as well as the stiffness. Therefore, by calculating the

system matrices consistently and comparing them to the matrices of the originally

perfect system, the occurance of a damage, and possibly its identity, might be
detected.

Damase Detection Criterion

Although this approach is theoretically feasible and effective, it is not easy

to implement in practice. The difficulty arises in interpreting the changes in the

system model and in being able to connect the different changes with the types of

damages that could have resulted in their occurrance. In addition, it is possible

that some parameters are more meaningful than others in this application. For

example, the diagonal elements in the mass matrix are more sensitive to changes in

mass at their respective locations than the off diagonal elements.

The stiffness matrix is somewhat more difficult to analyze than the mass matrix.

From the point of view of damage detection, it is more appropriate to observe

changes in the flexibility matrix than the stiffness matrix. This can be easily

verified by considering the static equations describing a multidegree-of-freedom

system, namely

[K] X = V (2)

Defining the flexibility matrix as [A] = [K] -I , Equation (2) becomes

X = [A] F (3)
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Assuming the system to have three degrees-of-freedom, Equations (2) and (3) maybe

expanded as follows:

and

Xl + k12 x2 + k13 x3 = fl
ell Xl + _22 x2 + .g23 x3 f2

k21 Xl + x2 + x3 f3k31 k32 K33

(4)

= fl + a12 f2 + a13 f3
Xl all fl + f2 + f3

x2 = a21 fl + a22 f2 + a23 f3x 3 = a31 a32 a33

(5)

It is clear from Equations (4) that klj represents the force at point i when xj

= I and xk = 0 where k _ j . This is Pather difficult to visualize in a compl_x

system. On the other hand, it can be seen from Equation (5) that a • represents theij
deflection at point i when a unit load is applied at point j. Besides being more

physically realizable, any element aij may be meaningfully treated separately.
The next issue to be addressed is-the significance of the diagonal and off-

digonal elements in the flexibility matrix. It has been traditionally accepted that

only the diagonal terms need to be considered since they strongly reflect the abso-

lute flexibility of their respective locations. This is not necessarily the most

effective approach though. To demonstrate that off-diagonal elements are a better

indication of the flexibility at a point, consider the system shown in Figure 6a.

The beam is of length L and is rigidly attached at both ends. If three equidistant

points are monitored on the beam, the resulting flexibility matrix could be found

using simple "strength of materials" tables to be

[A]
2.197 2.604 1.058 I

= _2.604 5.208 2.604

|
LI.058 2.604 2.197

10-3 L3

E1

where E is Young's modulus of the material and I is the cross-sectional area moment

of inertia of the beam. Now, taking the extreme case, suppose that the beam was cut

at some point between locations I and 2, resulting in two cantilever beams of une-

qual lengths (Figure 6b). The new flexibility matrix of the damaged system Is

[A] d =

5.208 0.000 0.000

0.000 41.667 13.020
|

0.000 13.020 5.208

10-3 L3

E1
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Monitored Locations
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Figure 6- a) Configuration of undamaged flxed-fixed beam

b) Configuration of damaged fixed-flxed beam. Separation

into two cantilever (flxed-free) beams.

A matrix [R] may now be constructed where each element rij is defined as

d

rij
aij

name ly

[R] E!!oooooooo -- 000 8. 000 5. 000

000 5.000 2.371_

Graphing the diagonal terms as a function of point location (Figure 7a), and noting

that the beam ends have a ratio of i, it would be deduced that the damage occurred

at point 2 due to the symmetry. On the other hand, if the off-diagonal elements of

the adjacent points are plotted between the two points they represent (Figure 7b),

the damage would be correctly identified as being between i and 2. It is of vital

importance to note that for diagonal terms the steepest peak represents the damage
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whereas for off-diagonal terms the steepest valley represents the damage.This is
because a load applied at a point next to the damagewould cause the point to
deflect more than it did before the damagewas introduced, whereas the point on the
other side of the damagewould deflect less than it did before the damagewas intro-
duced.

This example maybe expanded intuitively to consider the intermediate event
where the cut is not severe enough to separate the beam. If the beamis assumedto
be composedof two springs, one represnting the portion to the left of the damage,
and the other the portion to the right, then the deflection on either side of the
damagewould be in-dlrectly proportional to its respective spring stiffness. In
terms of the flexibility matrix ratio, this would meanthat the terms which were
zero would begin at I whenno damageexists, then decrease as the damagesize
increases, until the limiting value of zero is reached when the cut goes all the way
through the beam.Conversely, the off-diagonal terms larger than I would begin at
unity for no damageand finally reach somefinite limiting value for the through
cut. Figure 7c depicts this process showing the direction of change in the off-
diagonal elements. On the other hand, the ratio of the digonal elements would always
result in a symmetric curve regardless of the severity of the damage(Figure 7d).
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'd) Transition of Diagonal ELemo.t_ as Damage Increases

Figure 7

Experimental Implementation of Detection Criterion

An experiment was designed and conducted to verify the accuracy of the proposed

damage detection criterion. The experiment was composed of two identical parts, one

performed before the damage was induced, and the other afterward. To obtain the

response of every labeled point on the structure, each part was actually carried out

four times. Since four accelerometers were used, one accelerometer was kept at point
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10 w h i l e  t h e  o t h e r  t h r e e  were moved t o  d i f f e r e n t  l o c a t i o n s  f o r  each  run  of t h e  
e x p e r i m e n t .  The f o u r  sets of mon i to red  p o i n t s  were (1,2,3,10), ( 4 , 5 , 6 , 1 0 ) ,  
( 7 , 8 , 9 , 1 0 ) ,  and  (11,12,13,10). The c o l l e c t e d  d a t a  were p r o c e s s e d  i n  t h e  same f a s h i o n  
d e s c r i b e d  ear l ie r .  

cross-Randomdec s i g n a t u r e s  were o b t a i n e d  f o r  t h e  o t h e r  p o i n t s .  T h i s  r e s u l t e d  i n  f o u r  
s e p a r a t e  Randomdec s i g n a t u r e s .  The f o u r  s i g n a t u r e s ,  shown i n  F i g u r e  8, prove  t h e  
r e p e a t a b i l i t y  of t h e  t e c h n i q u e .  

S i n c e  s t a t i o n  10 w a s  common f o r  a l l  t h e  sets, it w a s  used  f o r  t r i g g e r i n g  w h i l e  
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F i g u r e  8 - Comparison of f o u r  i n d e p e n d e n t l y  o b t a i n e d  Randomdec 
s i g n a t u r e  

F i g u r e  9 - L o c a t i o n  of t h r o u g h  c u t  on o f f s h o r e  p l a t f o r m  mode1 

A t h r o u g h  c u t  was made w i t h  a hand saw a t  the c r o s s  m e m b e r  between p o i n t s  5 and  
6 ( F i g u r e  9) .  The same p r o c e s s  w a s  r e p e a t e d  and twe lve  cross-Randomdec s i g n a t u r e s  
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calculated. Figure i0 shows the Randomdec signatures at location i0 before and after

the damage was induced. The changes in frequency and phase are quite apparent.

The system identification technique was then used in conjunction with the two

pairs of Randomdec signatures at point I0 and the two pairs of eleven

cross-Randomdec signatures at points i to 9, ii, and 12 to obtain the system parame-

ters before and after the damage. This resulted in two pairs of 12x12 [M], [C], and

[K] matrices. The two stiffness matrices were inverted yielding two flexibility

matrices, and the ratio of the respective elements taken. Table I shows the ratios

of the diagonal elements and the off-dlagonal elements representing adjacent points.

Figure ii shows the diagonal ratios plotted directly on the structure. It is not

clear from the figure where the location of the damage is. The plot of the off-

diagonal ratios on the structure is shown in Figure 12. Noting the fact that the

lowest ratio indicates the location of the damage, it can be deduced from this

figure and from Table I that the damage is residing somewhere between points 5 and

6.
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Figure I0 - Change in Randomdec signature at point I0 after damage

Table I - Ratios of flexibility matrix elements before and after damage

DIAGONAL ELEMENTS OFF-DIAGONAL ELEMENTS

LEG 1

POINTS

Point

Number

i

3

5

7

9

ii

LEG 2

POINTS

Ratio

i .02

2.67

3.91

1.86

4.64

2.29

Point Ratio

Number

2 1.16

4 2.29

6 5.27

8 0.06

i0 1.64

12 1.09

LEG I

MEMBERS

Member Ratio

Number

1,3 3.08

3,5 1.76

5,7 0.87

7,9 0.53

9,11 2.56

LEG 2

MEMBERS

Member Ratio

Number

2,4 3.26

4,6 1.97

6,8 0.92

8,10 0.62

I0,12 2.16

INTER}fl_D1ATE

MEMBERS

Member Ratio

Number

1,2 3.62

3,4 1.16

5,6 0.13

7,8 0.50

9,10 1.04

11,12 3.19
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Figure Ii - Plot of flexibility matrix

diagonal elements on scale

mo de i

Figure 12 - Plot of flexibility matrix

off-diagonal elements on

scale model
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CONCLUSIONS

An experiment was conducted on a scale model of an offshore platform structure

to verify the applicability of the system identification technique introduced in

part I of this paper. The technique was employed to obtain a mathematical model of

the structure from the random response data. This model was then used to predict the

response of the structure and the forcing function initially introduced to excite

the structure. These results compared favorably with the measured data.

Finally, an approach to damage detection and location was demonstrated through

the inversion and comparison of the stiffness matrix before and after the damage is

introduced. The use of a simple example revealed that the off-diagonal elements are

more effective in locating the damage than the diagonal elements. The experiment

conducted on the scale model of the offshore platform confirmed these findings suc-

cessfully.

NOMENCLATURE

[A]

aij

[c]

E

F

fi

I

[KI

kij

[M]

[RI

rij

t

X

xi

X

X

flexibility matrix

element ij of flexibility matrix

damping matrix of multiple D.O.F. system

Young's modulus

input loading vector

element i of forcing vector

area moment of inertia

stiffness matrix of multiple D.O.F. system

element ij of stiffness matrix

mass matrix of multiple D.O.F system

matrix containing ratio of flexibility matrices

element ij of matrix [R]

time variable

position vector of multiple D.O.F. system

element i of position vector

velocity vector of multiple D.O.F. system

acceleration vector of multiple D.O.F. system
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